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The structural and physicochemical requirements of 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl-acetamides for binding with 
peripheral benzodiazepine receptor has been explored in the present QSAR study. The calculated hydrophobicity, logPcalc, 
shows a parabolic relation with the peripheral benzodiazepine receptor binding affinity, which suggests that the binding 
affinity increases with increase in the partition coefficient of the compounds until it reaches the critical value after which the 
affinity decreases. The range of the optimum values of logPcalc is between 5.423-5.819 as found from different equations. 
The width of the para substituents at R3 position is conducive for the binding affinity. The E-state values of the fragments 

like methyl, 
C

, 
C

 and 
N

 are conducive for the binding affinity, while E-state value of the fragment -F is 
detrimental to the binding affinity. The average distance sum of the connectivity (Balaban J) among different groups is also 
conducive for the binding affinity. The presence of methyl groups at R1 and R2 positions and the presence of substituents at 
R5 position are detrimental to the binding affinity, while presence of substituents at R3 position and the presence of methyl 
group at R6 position are conducive to the binding affinity.  
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Benzodiazepines are among the most widely 
prescribed drugs due to their pharmacological actions 
in relieving anxiety, and as anticonvulsants, muscle 
relaxants, or sedative hypnotics. These effects are 
mediated in the central nervous system through 
postsynaptic plasma membrane GABAA receptors that 
are γ-amino butyric acid-gated chloride channels1. 
Benzodiazepines bind with two main classes of 
receptors, the central-type benzodiazepine receptor 
(CBR) and the peripheral-type benzodiazepine 
receptor (PBR). CBR has been identified as a part of 
GABAA receptor/Cl– ionophore supramolecular 
complex, a pentameric protein, formed by different 
combinations of 21 distinct subunits (α1-6, β1-4, γ1-4, θ, 
π, ε, ρ1-3, δ), 16 of which have been found in the 
mammalian CNS. Allosteric modulation of GABAA 
by CBR ligands involves three distinct events: ligand 

binding to recognition site, transduction of the signal 
to the GABA effector site, modification in GABA-
gated conductance2. The peripheral-type 
benzodiazepine receptor (PBR), which was initially 
described as a binding site for the benzodiazepine 
diazepam present in peripheral tissues, is a 169-amino 
acid protein with five transmembrane domains of α-
helices composed of 21 hydrophobic residues 
associated with the outer mitochondrial membrane. It 
is also located on the outer mitochondrial membrane 
in several organs including the kidney, nasal 
epithelium, lung, heart, and endocrine organs such as 
the adrenal, testis, and pituitary gland3-6. It is 
described as a multimeric complex composed of the 
18 kDa molecular weight of isoquinoline binding 
receptor protein, the 34 kDa voltage-dependent anion 
channel (VDAC) protein required for benzodiazepine 
binding and the 30 kDa adenine nucleotide carrier of a 
yet unknown function in the complex7. Two 
additional proteins (10 kDa and PRAX-1) are 
believed to be involved in modulating PBR 

_________ 
Abbreviations: Quantitative structure-activity relationships 
(QSAR); MLR (Multiple Linear Regression); Factor analysis 
(FA)  
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functions8. The PBR complex being located at the 
contact site between the outer and the inner 
mitochondrial membranes, its subunit composition is 
thought to coincide with that of the mitochondrial 
permeability transition pore (PTP), which opens under 
specific conditions and enables unselective passage of 
molecules between the mitochondrial matrix and the 
cytoplasm9. The peripheral-type benzodiazepine-
binding site (PBR), also known as the ω3 binding site, 
is anatomically and pharmacologically distinct from 
the CBRs. They are highly expressed in steroidogenic 
tissues such as adrenal gland but also in kidney, heart, 
testis, and at a lower level in the brain parenchyma, 
ependyma, choroid plexus, and olfactory neurons10. 
Although the exact function of the PBR is not yet 
fully established, PBRs are involved in several 
functions such as cell proliferation, immune response 
modulation, regulation of mitochondrial oxidative 
phosphorylation, regulation of steroidogenesis and 
apoptosis11. The peripheral benzodiazepine receptor 
(PBR) was overexpressed in a variety of tumors (e.g., 
certain brain tumors, ovarian cancer, liver tumors, 
breast carcinoma, colorectal cancer, etc.); this has led 
to the evaluation of PBR ligands as receptor mediated 
anticancer drug carriers to selectivity target to tumors. 
The receptor in neoplastic cells opens up the 
possibility of new pharmacological and diagnostic 
approaches in oncology12,13. Increased concentrations 
of PBR were observed in lesion brain areas in a 
variety of neuropathological disorder such as multiple 
sclerosis, Alzheimer’s disease, and Huntington’s 
disease14-16. A wide variety of endogenous molecules 
have high affinities for PBR: they include the 
diazepam binding inhibitor (DBI) and its derived 
fragments, porphyrins (protoporphyrin IX, 
mesoporphyrin IX, hemin) and cholesterol. Specific 
synthetic PBR ligands can be divided into three 
families: i) benzodiazepines such as the 4′-chloro-
diazepam (Ro5-4864), ii) isoquinoline carboxamides 
(PK14105, a photoaffinity ligand, and PK11195, 
which is one of the most powerful PBR ligands 
known) and iii) indolacetamide derivatives (for 
example, FGIN-1-27). Recently, an additional new 
specific PBR ligand, SSR180575, which is a 
pyridazinoindole derivative, has been reported. These 
ligands, which bind PBR with nanomolar affinities, 
were routinely used as pharmacological tools to 
characterize PBR properties and functions17. Ligands 
of benzodiazepine receptors (BzR) elicit a wide range 
of pharmacological effects. According to the efficacy, 

the ligands have been classified into agonist, inverse 
agonist, and antagonist corresponding to different 
pharmacological activity. Agonists (GABA-positive 
ligands), increasing the frequency of Cl– channel 
opening, induce sedative/hypnotic, muscle relaxant, 
anticonvulsant and anxiolytic activities. Inverse 
agonists (GABA-negative ligands) decrease channel 
open frequency and display (pro)convulsant and 
anxiogenic activities. Antagonists do not exhibit, per 
se, any relevant biological effect but antagonize the 
action of agonists and inverse agonists. Based on 
thermodynamic features, Ro5-4864 was classified as 
an agonist whereas PK11195 was classified as an 
antagonist18-21. Useful information about PBR can be 
obtained from QSAR studies and the results of 
modeling of the putative endogenous PBR ligands and 
a subsequent comparison of their steric, electronic and 
lipophilic properties with those shared by high affinity 
synthetic ligands of PBR22.  
 Quantitative structure-activity relationship (QSAR) 
studies have been done on various derivatives acting 
on central and peripheral BzRs. Pharmacophore 
models have been reported for the acetamides23 and 
flavonoids24. Recently, Selleri et al.8 have reported a 
series of novel 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl 
acetamides derivative as potent and selective ligands 
for PBR. In the present communication, the binding 
affinity data of the compounds for PBR have been 
subjected to QSAR studies with physiochemical and 
topological parameters to explore the requirements for 
PBR binding.  
 
Materials and Methods 
 Peripheral and central benzodiazepine receptor 
(PBR) binding affinity data reported by Selleri et al.8 
have been used as the model dataset for the present 
QSAR study: the affinity data Ki(nM) of  
2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamides 
series were converted to the logarithmic scale 
[pKi(mM)] and then used for subsequent QSAR 
analyses as the response variable. There are six 
regions (Table I) of structural variations in the 
compounds: R1, R2 and R3 positions (showing diverse 
substitution pattern) and the R4, R5 and R6 positions 
(showing limited substitution pattern). The activity 
data (Table I) were subjected to QSAR analysis  
using linear free energy related (LEFR) model of 
Hansch25,26 using lipophilicity (π), electronic 
parameter (Hammett σ), steric parameter (molar 
refractivity MR)  and  sterimol (L, B1, B5)  parameters  
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of the aryl ring substituents along with topological 
parameters and dummy parameters as predictor 
variables. The values of the physicochemical 
parameters, as listed in Table II, have been taken 
from reference27. Some of the compounds reported in 

the original paper were excluded in the present study 
because of the uncommon structural features. 
Hydrophobic whole molecular descriptor (partition 
coefficient logPcalc) and molar refractivity (MR) were 
also tried as predictor variables. The software Chem 

Table I ⎯ Structural features, physiochemical properties and PBR binding affinity values  
2-phenylimidazo[1,2- a]pyrimidin-3-yl-acetamides 

 

N

N
N

N

O

R 3

R 4

R 2
R 1

R 6

R 5

 
            

Sl. No. R1 R2 R3 R4 R5 R6 logPcalc MR Obs a cal b cal c 
            

1 Et Et Ph Me H H 3.31 96.12 4.398 3.909 3.511 
2 Et Et Ph H H Me 2.94 96.13 3.810 3.550 3.652 
3 Et Et Ph Me H Me 3.64 101.07 4.538 4.533 4.524 
4 Et Et 4Cl-Ph Me H Me 4.20 105.67 5.620 6.027 5.785 
5 Et Et 4F- Ph Me H Me 3.80 101.47 5.036 5.119 5.457 
6 Et Et  4Me-Ph Me H Me 4.13 106.96 6.097 5.952 5.746 
7 Et Et 4MeO-Ph Me H Me 3.52 108.31 5.328 5.210 5.151 
8 Et Et 4F-Ph Me H H 3.47 96.52 4.602 4.527 4.468 
9 Et Et 4Cl-Ph H H Me 3.50 100.73 5.092 5.215 5.095 
10 Et Et 4Me-Ph Me H CF3 4.77 107.57 6.046 5.725 5.660 
11 Et Et 4Me-Ph CF3 H Me 4.77 107.57 6.000 5.737 6.192 
12 Et Et 4Meo-Ph CF3 H CF3 4.80 109.53 4.796 5.099 5.735 
13 Et Et 4Cl-Ph Me  H Ph 5.60 125.37 5.620 6.007 5.446 
14 Et Et 4Cl-Ph ---- H Me 3.50 100.73 5.469 5.215 5.095 
15 Et Et 4Cl-Ph Me Me Me 4.69 111.57 5.215 5.073 5.158 
16 Et Et 4Cl-Ph Me COOEt Me 4.36 122.72 5.076 4.807 4.982 
17 Et Et 4Me-Ph H Ph H 4.77 122.67 4.244 4.019 4.057 
18 Et Et Ph Ph H H 4.70 115.81 3.648 4.428 4.263 
19 Me Me 4Me-Ph Me H H 3.12 92.41 2.924 3.361 3.139 
20 Me Me Ph Me H Me 2.97 91.47 3.149 2.462 2.834 
21 n-Pr n-Pr Ph Me H Me 4.62 110.26 6.097 5.118 5.151 
22 i-Pr i-Pr Ph Me Me Me 4.77 116.34 4.051 4.687 4.389 
23 n-But n-But Ph Me H Me 5.45 119.46 5.347 5.280 5.322 
24 n-Pentyl n-Pentyl Ph Me H Me 6.29 128.66 5.097 5.134 5.177 
25 n-hexyl n-hexyl Ph Me H Me 7.12 137.86 4.638 4.688 4.719 
26 n-octyl n-octyl Ph Me H Me 8.79 156.26 2.949 2.886 2.850 
27 Bz Bz Ph Me H Me 6.19 139.62 4.398 4.380 4.684 
28 Et i-Pr Ph Me H Me 3.96 105.76 4.553 5.114 4.796 
29 Et Ph Ph Me H Me 4.97 115.35 6.097 4.831 4.887 
30 Et Bz Ph Me H Me 4.92 120.35 5.137 4.773 4.789 
31 Me (R)- CH CH3 Ph Ph Me H Me 5.02 120.65 4.658 4.479 4.268 
32 Me (S)-CHCH3 Ph Ph Me H Me 5.79 125.57 3.807 4.486 4.396 
33  -(CH2)4- Ph Me H Me 3.28 98.79 2.938 3.640 3.551 
34  -(CH2)5- Ph Me H Me 3.70 103.39 3.517 4.020 3.902 
35 n-Pr H Ph Me H Me 3.56 95.86 3.425 4.133 4.381 

 
a Taken from Ref. 8; bFrom Eq. (2); cFrom Eq. (6) 
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Draw Ultra ver 5.0 (ref. 28) was used for the 
calculation of logPcalc and MR values (Ghose and 
Crippen’s fragmentation method29). The calculated 
logPcalc and MR values for all compounds are given in 
Table I. The indicator and integer variables used in 
this study are defined in Table III.  
 The values for the topological and structural 
descriptors for the compounds has been generated by 
QSAR+ and Descriptor+ modules of the Cerius 2 
version 4.8 software30 from Accelrys (San Diego, 
USA) on a Silicon Graphics O2 workstation running 
under the IRIX 6.5 operating system. Various 
topological indices calculated are Balaban J, 
connectivity indices (0χ, 1χ, 2χ, 3χp, 3χc, 0χv, 1χv, 2χv, 
3χv

p, 3χv
c), kappa shape indices (1κ, 2κ, 3κ, 1κα, 2κα, 

3κα), E-state indices (S_sCH3, S_ssCH2, S_dsCH, 
S_aaCH, S_dssC, S_aasC, S_dCH2, S_dO, S_ssO, 
S_sOH, S_sCl, S_sssN, S_ssNH, etc.) and structural 
parameters [Rotlbonds (number of rotatable bonds), 
hydrogen bond acceptors and hydrogen bond 
donors)].  
 
The chemometric tools 
 For the development of equations, two methods 
were used: (1) stepwise regression, (2) multiple linear 
regressions with factor analysis as the data pre-
processing step for variable selection (FA-MLR).  

Stepwise regression 
 In stepwise regression31, a multiple-term linear 
equation was built step-by-step. The basic procedures 
involve (1) identifying an initial model, (2) iteratively 
"stepping," that is, repeatedly altering the model at the 
previous step by adding or removing a predictor 
variable in accordance with the "stepping criteria,"  
(in our case based on F for the forward selection 
method) and (3) terminating the search when stepping 
is no longer possible given the stepping criteria, or 
when a specified maximum number of steps has been 
reached. Specifically, at each step all variables are 
reviewed and evaluated to determine which one will 
contribute most to the equation. That variable will 
then be included in the model, and the process starts 
again. A limitation of the stepwise regression search 
approach is that it presumes there is a single "best" 
subset of X variables and seeks to identify it. There is 
often no unique "best" subset, and all possible 
regression models with a similar number of X 
variables as in the stepwise regression solution should 
be fitted subsequently to study whether some other 
subsets of X variables might be better.  
 
FA-MLR 
 In case of FA-MLR, though multiple regression 
technique was used as the final statistical tool for 
developing QSAR relations, factor analysis32,33 was 
used as the data preprocessing step to identify the 
important predictor variables contributing to the 
response variable and to avoid collinearities among 
them. In a typical factor analysis procedure, the data 
matrix is first standardized, and correlation matrix and 
subsequently reduced correlation matrix are 
constructed. An eigen value problem is then solved 
and the factor pattern can be obtained from the 
corresponding eigen vectors. The principal objectives 
of factor analysis are to display multidimensional data 
in a space of lower dimensionality with minimum loss 

Table III ⎯ Definitions of indicator and integer parameters 

Parameter Definition 
  

ICF3_R4R6 Indicator variable having value 1 if trifluoromethyl group is present at the R4 and R6 positions, value 0 otherwise 
ICH3_R6 Indicator variable having value 1 if methyl group is present at the R6 position, value 0 otherwise 
ICH3_R4 Indicator variable having value 1 if methyl group is present at the R4 position, value 0 otherwise 
ICH3_R3 Indicator variable having value 1 if methyl group is present at the R3 position, value 0 otherwise 
IAr_R3 Indicator variable having value 1 if substituted phenyl group is present at the R3 position, value 0 otherwise 
ICl_R3 Indicator variable having value 1 if chlorine atom is present at the R3 position, value 0 otherwise  
IH_R6 Indicator variable having value 1 if hydrogen atom is present at the R6 position, value 0 otherwise 
NCH3_R1R2 Number of methyl groups at R1 and R2 positions 
Ndieth_R1R2 Number of ethyl groups at R1 and R2 positions 
IR5 Indicator variable having value 1 if any substitution group is present at R5, value 0 otherwise 

 

Table II ⎯ Different physiochemical parameters  
of aromatic substituentsa 

Substituents Substituent Constants 

R π MR σP B1 B5 L 
       
H 0 0.103 0 1 1 2.06 
Cl 0.71 0.60 0.23 1.8 1.8 3.52 
CH3 0.56 0.56 -0.17 1.52 2.04 2.87 
F 0.14 0.09 0.06 1.35 1.35 2.65 
OCH3 -0.02 0.79 -0.27 1.35 3.07 3.98 

aTaken from ref. 27 
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of information (explaining >95% of the variance of 
the data matrix) and to extract the basic features 
behind the data with ultimate goal of interpretation 
and/or prediction. The factors were extracted by 
principal component method and then rotated by 
VARIMAX rotation (a kind of rotation which is used 
in principal component analysis so that the axes are 
rotated to a position in which the sum of the variances 
of the loadings is the maximum possible) to obtain 
Thurston's simple structure. The simple structure is 
characterized by the property that as many variables 
as possible fall on the coordinate axes when presented 
in common factor space, so that largest possible 
number of factor loadings becomes zero. This is done 
to obtain a numerically comprehensive picture of the 
relatedness of the variables. Only variables with non-
zero loadings in such factors where biological activity 
also has non-zero loading were considered important 
in explaining variance of the activity. Furthermore, 
variables with non-zero loadings in different factors 
were combined in a multivariate equation.  
 The factor analysis (FA) and multiple regression 
analysis (MLR) were performed using the statistical 
software SPSS34. The statistical quality of the 
equations35 was judged by the parameters like 
explained variance (Ra 2, i.e., adjusted R2), corre-
lation coefficient (r or R), standard error of estimate 
(s), variance ratio (F) at specified degrees of freedom 
(df) and 95% confidence intervals of the regression 
coefficients. All accepted equations have regression 
coefficients and F ratios significant at 95% and 99% 
levels respectively, if not stated otherwise (marked 
with*). A compound was considered as an outlier if 
the residual is more than twice the standard error of 
estimate for a particular equation. The generated 
QSAR equations were validated by PRESS (leave-
one-out)36,37 statistics using MINITAB software38 and 
the reported parameters are cross-validation R2 (Q2), 
predicted residual sum of squares (PRESS), standard 
deviation based on PRESS (SPRESS)39 and standard 
deviation of error of prediction (SDEP)39. Finally, 
‘leave-25%-out’ was also applied on some selected 
equations to show robustness and predictive potential 
of the generated equations. 

 
Results and Discussion 
Stepwise Regression 
 Using stepping criteria based on F value, the 
following two equations were derived with seven and 
six variables respectively:  

2

_ 3

3 _ 1 2

5
2 2

2.735( 0.929) log 0.235( 0.082)[log ]
1.010( 0.698) 1 0.136( 0.137) _

2.436( 1.559) 0.633( 0.392)

1.330( 0.694) 8.993( 4.610)

35, 0.692, 0.755, 0.869,

12.9(

i calc calc

p R

CH R R

R

a

pK P P
B S aasC

JX N

I

n R R R

F d

= ± − ±
+ ± + ±

+ ± − ±

− ± − ±

= = = =

= 27, 27), 0.537, 0.595,
0.607, 0.691, 12.9PRESS

f s Q
SDEP S PRESS

= =
= = =

 

… (1) 
 
 
The 95% confidence intervals of the regression 
coefficients are mentioned within parentheses. Eq. (1) 
can explain and predict 69.2% and 59.5% respectively 
of the variance of the PBR binding affinity. The 
partition coefficient shows a parabolic relation with 
the PBR binding affinity. This suggests that the 
binding affinity increases with increase in the 
partition coefficient of the compounds until it reaches 
the critical value after which the affinity decreases. 
The critical value of logPcalc is 5.819. The positive 
coefficient of B1p_R3 indicates that the width of the 
para substituents is conducive for the binding affinity. 
The positive coefficient of S_aasC shows that the 
binding affinity increases with increase in the E-state 

values of the fragment
C

. The positive coefficient 
of the average distance sum connectivity (Balaban J) 
signifies the importance of relative distance among 
different groups. The negative coefficient of NCH3_R1R2 
shows that the presence of methyl groups at R1 and R2 
are detrimental to the binding affinity. The negative 
coefficient of IR5 shows that the presence of 
substituents at R5 position is detrimental to the 
binding affinity. The intercorrelation (r) matrix 
among the predictor variables used in Eq. (1) is given 
in Table IV.  
 
 

2

_ 3 3

3 _ 1 2 5

2 2

2 .3 3 2 ( 0 .8 5 0 ) lo g 0 .2 1 5 ( 0 .0 7 8 ) [ lo g ]
1 .4 2 6 ( 0 .6 1 5 ) 1 0 .1 7 0 ( 0 .0 9 6 ) _

0 .6 8 8 ( 0 .3 7 1) 1 .5 2 2 ( 0 .6 8 0 )

3 .8 9 2 ( 2 .4 1 0 )
3 5 , 0 .7 1 8 , 0 .7 6 8 , 0 .8 7 6 ,

1 5 .4 ( 6 , 2 8 ) , 0 .5 1 3 ,

i c a l c c a lc

p R

C H R R R

a

p K P P
B S s C H

N I

n R R R

F d f s Q

= ± − ±

+ ± + ±

− ± − ±

− ±

= = = =

= = 2 0 .6 1 3 ,
0 .5 9 3 , 0 .6 6 3 , 1 2 .3P R E S SS D E P S P R E S S

=
= = =

 … (2) 
 
Eq. (2) can explain and predict 71.8% and 61.3% 
respectively of the variance of the PBR binding 
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affinity. The critical value of logPcalc is 5.423. The 
positive coefficient of S_sCH3 shows that the binding 
affinity increases with increase in the E-state values 
of the methyl fragment. The calculated binding 
affinity values according to Eq. (2) are given in  
Table I. Leave-25%-out crossvalidation was also 
applied on Eq. (2); the average regression coefficients 
for the different variables and the corresponding 
standard deviations for the four cycles are shown in 
Table V. The intercorrelation (r) matrix among the 
predictor variables used in Eq. (2) is given in  
Table IV. 
 
FA-MLR 
 The peripheral benzodiazepine receptor binding 
affinity, topological parameters, physiochemical 
substituent constants of the phenyl ring and the 
indicator/integer descriptors along with hydrophobic 
and steric whole molecular descriptors partition 
coefficient (logPcalc), and molar refractivity  
(MR) were subjected to the factor analysis. The results 
of the factor analysis showed that eleven factors  
could explain 95.8% of the variance of the binding 
affinity. Different factors (arranged in order of 
decreasing importance) in which the binding  
affinity shows non-zero loadings are: factor 11 
(loaded in NCH3_R1R2), Factor 3 (loaded in B1p_R3), 
factor 8 (loaded in ICH3_R6, IH_R6,), factor 9 (loaded in 
IAr_R3, σp_R3), factor 4 (loaded in H_bond_donor,  
chiral centers, S_ssNH and S_sssN), factor 2  
(loaded in S_sCl, 3χc, SC_3_C, S_aasC, S_aaaC), 
factor 10 (loaded in S_ssO). The binding affinity is 
poorly loaded with other factors (1, 5, 6, 7). Based on 
the results of the factor analysis (Table not shown), 
the following equation with seven variables was 
derived:  
 

2

5 3 _ 1 2

_ 3

2 2

3 .0 5 3 ( 0 .9 8 5 ) lo g 0 .2 5 9 ( 0 .0 8 6 ) [ lo g ]
0 .1 4 5 ( 0 .1 7 7 ) _ 2 .5 5 2 ( 1 .5 8 0 )
1 .2 2 4 ( 0 .6 6 3 ) 0 .5 8 2 ( 0 .3 8 6 )

0 .7 0 0 ( 0 .4 5 8 ) 8 .5 0 2 ( 4 .7 7 9 )

3 5 , 0 .6 9 3 , 0 .7 5 6 , 0 .8 7 0 ,

1 2 .0 (

i c a l c c a lc

R C H R R

A r R

a

p K P P
S s s s s C J X
I N

I

n R R R

F

= ± − ±

+ ± + ±
− ± − ±

+ ± − ±

= = = =

= 27 , 2 7 ) , 0 .5 3 6 , 0 .5 6 2 ,
0 .6 3 0 , 0 .7 1 8 , 1 3 .9P R E S S

d f s Q
S D E P S P R E S S

= =
= = =

  … (3) 
 
 The 95% confidence intervals of the regression 
coefficients are mentioned within parentheses. Eq. (3) 
can explain and predict 69.3% and 56.2% respectively 
of the variance of the PBR binding affinity. The 
partition coefficient shows parabolic relation with the 
activity. This suggests that the binding affinity 
increases with increase in the value of partition 
coefficient of the compounds until it reaches the 
critical value after which the affinity decreases. The 
critical value of logPcalc is 5.894. The positive 
coefficient of S_ssssC shows that the binding affinity 
increases with increase in the E-state values of the 

fragment
C

. The positive coefficient of IAr_R3 shows 
that the presence of substituents at R3 is conducive to 
the binding affinity.  
 When the term S_ssssC is replaced with S_sF in 
Eq. (3), marginal increase in the quality was observed. 
 

2

5 3 _ 1 2

_ 3

2 2

3 .0 5 0 ( 0 .9 7 1) lo g 0 .2 5 9 ( 0 .0 8 6 )[lo g ]
0 .0 1 9 ( 0 .0 1 4 ) _ 2 .5 8 2 ( 1 .5 6 3)
1 .2 7 2 ( 0 .6 6 6 ) 0 .5 9 8( 0 .3 8 2 )

0 .7 5 1( 0 .4 6 2 ) 8 .5 4 5( 4 .7 0 2 )

3 5, 0 .6 9 9 , 0 .7 6 1, 0 .8 7 2 ,

1 2 .3( 7

i ca lc ca lc

R C H R R

A r R

a

p K P P
S sF JX
I N

I

n R R R

F d f

= ± − ±
− ± + ±
− ± − ±

+ ± − ±

= = = =

= 2, 2 7 ), 0 .5 3 0 , 0 .5 7 1,
0 .6 2 3, 0 .7 1 0 , 1 3 .6P R E S S

s Q
S D E P S P R E S S

= =
= = =

  … (4) 
 
 

Table IV ⎯ Intercorrelation (r) matrix for topological, physiochemical and indicator variables of Eqs (1) and (2)

 logPcalc  [logPcalc ]2 JX NCH3_R1R2 IR5 S_aasC B1P_R3 S_sCH3 
         
logPcalc  0.984 -0.528 -0.195 0.031 0.092 -0.194 0.149 
[logPcalc ]2 0.984  -0.513 -0.156 -0.014 0.093 -0.219 0.138 
JX -0.528 -0.513  0.041 0.161 -0.355 0.450 0.412 
NCH3_R1R2 -0.195 -0.156 0.041  -0.122 0.128 -0.084 0.058 
IR5 0.031 -0.014 0.161 -0.122  0.270 0.318 0.448 
S_aasC 0.092 0.093 -0.355 0.128 0.270  -0.059 0.351 
B1P_R3 -0.194 -0.219 0.450 -0.084 0.318 -0.059  0.073 
S_sCH3 0.149 0.138 0.412 0.058 0.448 0.351 0.073  
         
 

 



DALAI et al.: QSAR OF PERIPHERAL RECEPTOR BINDING AFFINITY 
 
 

2503

 
Eq. (4) can explain and predict 66.8% and 57.5% 
respectively of the variance of the PBR activity data. 
The negative coefficient of S_sF shows that the E-
state value of the fragment -F is detrimental to the 
binding affinity. The critical value of logPcalc 
according to Eq. (4) is 5.880. There was further 
improvement in the quality of the model when S_sssN 
was introduced in place of S_sF.  
 

2

5

3 _ 6 3 _ 1 2

_ 3

2 2

2 .516( 0.934) log 0.229( 0.086)[log ]
0.447( 0.551) _ 0.964( 0.648)
0.617( 0.496) I 0.519( 0.402)

0.998( 0.447) 3.176( 2.706)

35, 0.668, 0.737, 0.858,

1

i calc calc

R

C H R C H R R

Ar R

a

pK P P
S sssN I

N

I

n R R R

F

= ± − ±
+ ± − ±

+ ± − ±

+ ± − ±

= = = =

= 20.8( 7, 27), 0.557, 0.575,
0.621, 0.707, 13.5PRESS

df s Q
SD EP S PRESS

= =
= = =

  … (5) 
 
Eq. (5) can explain and predict 66.8% and 57.5% 
respectively  of  the  variance   of   the   PBR   binding  

 
affinity. The critical value of logPcalc according to Eq. 
(5) is 5.493. Further improvement in the predicted 
variance of the model was obtained when S_sssN was 
introduced in place of S_sF, but explained variance 
decreased.  
 

2

3 _ 1 2

3 _ 6 _ 3

5

2 2

2 .6 7 2 ( 0 .9 2 9 ) lo g 0 .2 3 2 ( 0 .0 8 4 ) [ lo g ]
1 .5 8 0 ( 1 .4 6 0 ) 0 .5 2 1( 0 .3 9 2 )

0 .5 7 3 ( 0 .4 8 6 ) 0 .7 9 1( 0 .4 8 4 )

0 .9 9 3 ( 0 .6 3 4 ) 6 .0 4 1( 4 .2 6 2 )

3 5 , 0 .6 8 6 , 0 .7 5 1, 0 .8 6 7 ,

1 1 .6 (

i c a lc c a l c

C H R R

C H R A r R

R

a

p K P P
J X N

I I

I

n R R R

F

= ± − ±

+ ± − ±

+ ± + ±

− ± − ±

= = = =

= 27 , 2 7 ) , 0 .5 4 1, 0 .5 9 4 ,
0 .6 0 7 , 0 .6 9 1, 1 2 .9P R E S S

d f s Q
S D E P S P R E S S

= =
= = =

 

 

 … (6) 
 

Eq. (6) can explain and predict 68.6% and 59.4% 
respectively of the variance of the PBR binding 
affinity. By replacing S_sssN with IAr_R3 in Eq. (5) 
considerable rise in the quality of the model resulted. 
The positive coefficient of ICH3_R6 shows that the 
presence of methyl group at R6 is conducive to the 
binding affinity. The critical value of logPcalc 

Table V ⎯ Intercorrelation (r) matrix for topological, physiochemical and indicator variables of Eqs (3), (4), (5) and (6)

 logPcalc  [logPcalc ]2 JX NCH3_R1R2 ICH3_R6 IAr_R3 IR5 S_sssN S_ssssC 
          
logPcalc   0.98 -0.53 -0.20 0.10 -0.24 0.03 0.15 -0.06 
[logPcalc ]2 0.98  -0.51 -0.16 0.11 -0.26 -0.01 0.16 -0.02 
JX -0.53 -0.51  0.04 -0.11 0.51 0.16 0.01 -0.34 
NCH3_R1R2 -0.20 -0.16 0.04  -0.08 -0.07 -0.12 -0.06 0.10 
ICH3_R6 0.10 0.11 -0.11 -0.08  -0.35 -0.02 0.01 0.36 
IAr_R3 -0.24 -0.26 0.51 -0.07 -0.35  0.23 0.04 -0.32 
IR5 0.03 -0.01 0.16 -0.12 -0.02 0.23  0.11 0.10 
S_sssN 0.15 0.16 0.01 -0.06 0.01 0.04 0.11  0.16 
S_ssssC -0.06 -0.02 -0.34 0.10 0.36 -0.32 0.10 0.16  
          

Table VI ⎯ Results of leave-25%-out cross-validation applied on Eqs.(2) and (6) Model equation, pC = Σβixi + α. 

Eq. No No. of cycles Average regression coefficients (± standard deviations) Q2 Statistic (Average Pres)
    

2 4a 2
_ 3

3 3_ 1 2

5

2.074( 1.105) log 0.169( 0.149)[log ] 0.470( 0.512) 1

1.148( 0.623) _ 1.043( 1.019)

0.150( 0.062) 3.052( 3.067)

calc calc P R

CH R R

R

P p B

S sCH N

I

± − ± − ±

+ ± − ±

+ ± − ±
 

0.583 
(0.487) 

6 4a 2

3_ 1 2 3_ 6 _ 3

5

2.838( 0.433)log 0.249( 0.042)[log ] 1.642( 0.304)
0.523( 0.062) 0.581( 0.242) 0.770( 0.279)

1.009( 0.195) 6.540( 1.087)

calc calc

CH R R CH R Ar R

R

P P JX
N I I

I

± − ± + ±
− ± + ± + ±

− ± − ±
 

0.540 
(0.507) 

    
Q2 denotes cross-validated R2. Average Pres means average of absolute values of predicted residuals.  
a Compounds were deleted in 4 cycles in the following manner: (1, 5, 9,.....33), (2, 6, 10,...34), (3, 7, 11,...35), (4, 8, 12,...32), 
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according to Eq. (6) is 5.759. The calculated binding 
affinity values according to Eq. (6) are given in  
Table I. The intercorrelation (r) matrix among the 
predictor variables used in Eq. (3), (4), (5) and (6) is 
given in Table V. Eq. (6) involves seven descriptors 
for 35 data points and thus maintains the 
recommended ratio of number of descriptors to 
number of data point of 1:5. Furthermore, the leave-
one-out Q2 value is more than the recommended cut-
off value of 0.540,41. Leave-25%-out crossvalidation 
was also applied on Eq. (6); the average regression 
coefficients for the different variables and the 
corresponding standard deviations for the four cycles 
are shown in Table VI. Crossvalidation statistics 
indicate robustness of the formulated models.  
 
Conclusions 
 The present QSAR study has explored the 
structural and physicochemical requirements of  
2-phenylimidazo[1,2- a]pyrimidin-3-yl-acetamides as 
peripheral benzodiazepine receptor ligands. The 
logPcalc parameter shows a parabolic relation with the 
peripheral benzodiazepine receptor binding affinity, 
which suggests that the binding affinity increases with 
increase in the partition coefficient of the compounds 
until it reaches the critical value after which the 
affinity decreases. The range of the critical value of 
logP is within 5.423-5.819. The width of the para 
substituents at R3 is conducive for the binding 
affinity. The E-state values of the fragments like 

methyl, 
C

, 
C

 and N  are conducive for 
the binding affinity, while E-state values of the 
fragment of -F is detrimental to the binding affinity. 
The average distance sum of the connectivity 
(Balaban J) among different groups is also conducive 
for the binding affinity. The presence of methyl 
groups at R1 and R2 positions and presence of 
substituents at R5 position are detrimental to the 
binding affinity, while presence of substituents at R3 
position and presence of methyl group at R6 position 
are conducive to the binding affinity.  
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